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Abstract—Spectrum sensing is a crucial element of dynamic
spectrum access (DSA) as it enables cognitive radios (CRs)
to opportunistically access the under-utilized spectrum. Exist-
ing efforts on sensing have not adequately addressed sensing
scheduling over time for better detection performance. In this
work, we consider sequential periodic sensing of an in-band
channel. We focus primarily on finding the appropriate sensing
frequency during an SU’s active data transmission on a licensed
channel. Detection schemes addressing channel state change and
anomalous data are designed specifically to facilitate short-term
sensing adaptation to the variations in sensed data. In addition,
long-term adaptation is also considered so that the evolving
sensing environment can be reflected in the sensing schedule as
well. Simulation results demonstrate that our design guarantees
better conformity to the spectrum access policies by significantly
reducing the delay in change detection while ensuring better
sensing accuracy.

Index Terms—Cognitive radio, sequential periodic spectrum
sensing, in-band channel, channel detection time, change and
outlier detection, sensing adaptation.

I. INTRODUCTION

COGNITIVE radio (CR), a wireless paradigm that aims to
access the crowded but under-utilized spectrum more ef-

ficiently, has attracted surging interests in recent years. In CR,
unlicensed secondary users (SUs) detect the presence/absence
of licensed primary users (PUs) via spectrum sensing. Sensing
is enforced by the CR system primarily to protect the PUs
against excessive interferences from the SUs, but it also helps
the SUs seek better spectrum opportunities for their own data
transmission. Although sensing is crucial for CR, the ultimate
goal of any SU is to have a higher data rate for its own
communications. Therefore, it is always desirable that the SUs
achieve efficient sensing by reducing resource consumption
(e.g., energy, time) while meeting certain system requirements
(delay, accuracy, etc.).

Existing studies on the networking aspect of the dynamic
spectrum access [17] have generally focused on developing
algorithms to use the spare spectrum while assuming that
the available channels have been detected or can be easily
detected with minimal time and/or without errors. On the other
hand, many studies from the signal processing communities
have applied sophisticated detection techniques [17] with the
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assumption that the SU has perfect knowledge of the primary
users’ signal features and the available channels can be used
continuously. There has been very limited research effort on
sensing scheduling over time, a significant issue in secondary
spectrum access because it directly pertains to the extent the
SUs can make use of the available spectrum opportunities
while bringing minimal interference to the communications
among the licensed channel users.

CR sensing is often not one-time detection; an SU should
check the channel status periodically even during its data
transmission. Although some PUs do exhibit long-term sta-
tistical patterns, many wireless devices are subject to un-
predictable ON-OFF switching and mobility. A PU of the
latter type can reclaim its channel at any time, demanding
timely evacuation of the SU therein. Such uncertainty in the
PUs necessitates periodic sensing of the channels by the SUs
with robust online decision-making algorithms. Another core
element of this work is a sequential detector that accumulates
data gradually over time till a certain decision threshold is
reached. Applying sequential detection is particularly suited
to the periodicity of the sensing process, where sensing takes
place within a time frame that resembles a moving window, a
structure that facilitates the SU to schedule its sensing action
over time.

We address sensing of the in-band channel which an SU is
using for its own data transmission. The quality of this channel
is the paramount issue for an SU during its data transmission.
Instead of studying how cooperation can potentially benefit the
sensing performance [12], we are primarily interested in the
extent to which different scheduling schemes of one single SU
affect its sensing performance. This often reflects the scenarios
with limited resources, such as the unavailability of the nearby
SUs or insufficient battery power of an SU that prevents it
from participating in cooperation.

If the channel status changes during sensing (e.g., when a
PU returns), an SU should take extra care so that it could
vacate the channel faster. The competing requirements on
the maximum protection of the PU and channel utilization
of the SU lead us to design an adaptive scheduling scheme,
in which the SU dispenses more sensing efforts whenever
“signs” of a possible PU return are observed. Meanwhile,
sensing should be robust against possible data outliers, whose
effect may sometimes resemble that of the real channel state
change and may lead to a wrong sensing decision. A heuristic
algorithm is proposed to spot and exclude such extreme mea-
surements. Because of the channel variations and uncertainties
in a real system, a sensing schedule should be updated to
reflect any long-term shift in the environment. Since it is
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in general unrealistic to directly measure the instantaneous
channel signal-to-noise ratio (SNR), an SU should observe
the shift in the statistics of its sensed data and allow gradual
and periodic adaptation to reflect such changes. We consider
an adaptive schedule over time that utilizes certain properties
of the underlying sequential detection algorithm.

The major contributions of this work are as follows:
• We introduce the Grouped-Data Sequential Probability

Ratio Test (GD-SPRT) as the baseline sequential detec-
tion scheme for our periodic sensing, in which grouping
effectively reduces the impact of short-term channel
randomness;

• We explore the timing issues during the periodic sensing,
and propose a sensing schedule according to the average
speed of the underlying sequential test;

• We propose short-term change and outlier detection
schemes for robust decision making with the presence of
anomalous data as well as prompt detection of a channel
state change so that the PUs can be effectively protected
against prolonged interference;

• We design an online adaptive scheduling algorithm,
which updates the sensing frequency based on the de-
tected change in the sequentially observed sensing data;

• We provide simulation results to demonstrate the validity
and major advantages of our design.

The rest of the paper is organized as follows. After pre-
senting related works in Sec. II, we provide an overview of
the sensing preliminaries and the system model in Sec. III.
Next in Sec. IV, we discuss the baseline sequential detection
rule. In Sec. V, focusing on long-term sensing scheduling,
we propose our scheme based on the average run speed
of the sequential test; this is further developed in Sec. VI,
which addresses short-term change and outlier detection. In
Sec. VII, an adaptive algorithm is proposed that accounts
for the changes in the sequentially observed data. Simulation
results and their analysis can be found in Sec. VIII before we
conclude the paper in Sec. IX.

II. RELATED WORK

Among the numerous studies on spectrum sensing, very
few have considered periodic in-band channel sensing. We
found [7] and [11] are closest to our work. In [7], a deter-
ministic off-line scheme is proposed to find the appropriate
sensing frequency. Upon careful examination, the simple OR-
rule cannot always guarantee that the prescribed accuracy
requirements are met under varying channel conditions. In
[11], the authors use Wald’s sequential test, a well-known
sequential detector, to accumulate groups of data within a
predefined period and make a final decision. Although at
first glance our sensing scheme looks similar, fundamental
differences exist in the ways sensing is scheduled, data are
accumulated, and the decisions are made over time. On the
other hand, works such as [2], [3], and [18] have considered
reward-based scheduling schemes and their optimality, but
it’s unclear how these algorithms can be applied in practical
systems.

Some studies, such as [4] and [9], have considered change
detection for cognitive radios. By utilizing the cumulative sum

(CUSUM) approaches, they aim to find the theoretically quick-
est detector – in a single test – in the wake of a channel state
change without considering how such tests can be scheduled
over time. On the other hand, outlier detection has not been
systematically studied for CR applications. In this work, we
focus primarily on practical implementations of the change
and outlier detection rules in order to satisfy the specific
requirements for periodic sensing. Parameter adaptation is a
viable approach in dynamic system design; however, very little
has been studied about sensing adaptation in the context of
cognitive radio. Attention has been given to the somewhat
more passive threshold adaptation during the detection process
such as in [5] and [16]; we, on the other hand, are more
interested in the adaptation of sensing actions carried out by
the SUs, which is a more effective means to proactively tackle
the system variation and uncertainty.

In our earlier work [10], we performed initial studies on
sequential periodic sensing. In this work, we provide more
detailed analysis on its implementation and proofs on certain
properties of the detector. In addition, we introduce a long-
term adaptation algorithm to account for the variation and un-
certainty in the environment. Finally, we have performed more
extensive performance evaluation and analysis to demonstrate
the effectiveness of our proposed algorithms in balancing the
dual requirements of PU protection and SU channel access.

III. SENSING PRELIMINARIES AND SYSTEM MODEL

For an in-band channel currently being used by an SU,
the two hypotheses regarding the state of the channel are as
follows:

• H0: The channel is still available (the PU is absent);
• H1: The channel is occupied by the PU.
1) Sensing Method: If an SU has enough knowledge about

the PU signal characteristics, it can apply feature detection,
which often yields more accurate sensing decisions. For ex-
ample, the cyclostationary feature of an ATSC DTV signal
has been used for detection of the pilot signals [7], [8]. In
contrast, an energy detector measures only the intensity of the
ambient signal without relying on any prior information about
the PU signal features. Energy detection generally runs much
faster than feature detection, at the cost of reduced accuracy.
In our study, no prior knowledge about the PU signal features
is assumed; the general form of the energy detection serves
as the building block for our sequential detection.

2) Noise and Signal Powers: Every SU in the network is
equipped with a single transceiver so that sensing and data
communication cannot coincide. The local noise level follows
a wide-sense-stationary (WSS) process, whose average power
has been calibrated as σ2. If the current in-band channel has
been sensed during the PU’s earlier “ON” periods, the SU
may have measured and recorded the actual signal power, from
which the long-term average can be calculated. Subtracting the
calibrated noise power from this average, the SU can coarsely
estimate the average received signal power from the associated
PU alone.

In a real system, the scattering environment, interference,
and mobility may subject the average received signal power to
various degrees of fluctuation. It’s also not always possible for
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Fig. 1. Channel detection time CDT , sensing period Tp, and sensing time
Ti

the SU to pinpoint the source of the electromagnetic energy it
receives. Any signal, if strong enough beyond the calibrated
local noise, is detrimental to the SU’s data transmission.
Regardless of the actual signal source – the PU or other
interferers – the SU should aim to detect the presence of any
external signals, and switch to another channel for its data
transmission if the intensity becomes strong enough. The SU
can define a target signal level P for the detection task, which
is to be used as the nominal signal power in our sequential
detector.

3) Time Measures in Periodic Sensing: Fig. 1 illustrates
the structure of the in-band channel periodic sensing with
equally spaced intervals. The channel detection time (CDT) is
defined as the maximum allowed time for a sensing decision
to be made. A CDT usually consists of multiple sensing-
transmission periods, each being called a sensing period Tp;
and the continuous portion within each Tp dedicated to sensing
is the sensing time Ti. We have Tp ≤ CDT so that the
channel is sensed at least once during a CDT period with
a sensing decision subsequently being made. We note that the
CDT is particularly the requirement in IEEE WRAN 802.22,
a standard for opportunistic use of the TV-band white spaces
[1].

Because the SU is often bound by hardware constraints so
that it can only take a fixed number of samples at a time.
In this work, the value of Ti is given as 1 ms [7], while the
length of Tp can be changed, which reflects variable sensing
schedules. Likewise, due to many higher-layer concerns such
as coordination and synchronization, often only a set of
discrete Tp values are allowed in a practical system. For
example, in 802.22 WRAN, Tp may only take values that are
multiples of a MAC frame size 10 ms. In this work, sensing
scheduling is equated with choosing an appropriate Tp, and
the final step of “discretizing” the value will be implicitly
assumed. The sensing overhead describes the proportion of
time dedicated to the sensing task and is defined as the ratio
between Ti and Tp. In this work, Ti (1 ms) is rather short
compared to Tp (k · 10 ms), and the sensing overhead is
at most 10% for satisfactory secondary data communication
performance.

IV. GROUPED-DATA SEQUENTIAL PROBABILITY RATIO
TEST (GD-SPRT)

A sequential detector observes data over time and decides,
at each step, whether the set of observations it has collected
is sufficiently reliable for decision making; and if yes, which
underlying hypothesis is acting to yield the observed data.
Both a stopping rule and a decision rule are in place for
sequential detection. The parametric version of the sequential

detection is applied in our study, where the noise and nominal
PU signal power levels are used as input parameters.

Wald’s Sequential Probability Ratio Test (SPRT) [14] is a
well-known sequential detection scheme. The SPRT accumu-
lates the log-likelihood ratio of the i.i.d. individual samples
till either of the two constant thresholds is reached. It has
been proved that for one run of the detector, on average,
Wald’s SPRT needs the fewest samples among all the tests
for the same (PFA, PMD) requirement. Here PFA and PMD

denote false alarm and missed detection probabilities, respec-
tively. In this work, we also adopt an SPRT-like detection
scheme, namely, the grouped-data SPRT (GD-SPRT), with
data samples within each Ti being grouped together to form
a “super-sample”. This can reduce the effect of short-term
channel randomness (e.g., multi-path fading) which exists on
a much smaller timescale (i.e., in the microseconds) compared
to Ti.

Step 1: Calculate the energy y(x) from M samples.
The SU collects the ambient signal at a certain sampling

rate. After a sensing block Ti, the energy of M samples
contained within is

y(x) =
M∑
i=1

x2
i , (1)

where xi denotes the individual samples within Ti.
In practice, the number of samples taken within a single Ti

is fairly large. For example, for Ti = 1 ms, M = 6, 000 with
the Nyquist sampling rate of a 6 MHz TV band. With the law
of large number approximation (M � 10), we have

y(x) i.i.d.∼
{
H0 : N (MPn,MP 2

n),

H1 : N (MPn(1 + SNR),MP 2
n(1 + SNR)2),

(2)
which can be easily obtained from the results in [13]. Here,
SNR is defined as the ratio between the nominal signal power
P and local noise floor σ2 = PnB, where Pn is the noise
power spectral density (PSD) and B is the channel bandwidth.
An energy sample of duration Ti is approximately Gaussian
regardless of the original distribution of the PU signal.

Step 2: Derive the test statistic T (y(x)) for each group.
The log-likelihood ratio (LLR) of the energy sample is

calculated as

T (y(x)) = ln
f1(y(x))
f0(y(x))

, (3)

where f0(·) and f1(·) are the pdfs under H0 and H1, re-
spectively, as indicated in Eq. (2). Since the energy sample
y(x) is the data that we will be directly handling, for ease of
exposition, from now on, we will simply refer to y(x) as y.

Step 3: Accumulate the test statistics T (y) across groups
to obtain the aggregate test statistic T , and compare it
against two constant thresholds A and B.

Each T from Step 2 corresponds to one group of data. For
the n-th group, we have

T (yn) = ln
f1(yn)

f0(yn)
. (4)
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As we accumulate T ’s sequentially, the aggregate test statistic
up to the n-th group is

Tn =
n∑

k=1

T (yk) =
n∑

k=1

ln
f1(yk)

f0(yk)
. (5)

The two decision thresholds are chosen the same values as
those in Wald’s SPRT:

A = ln
pMD

1− pFA
, and B = ln

1− pMD

pFA
. (6)

The decision rule for the SU is
• if Tn > B, it decides that the PU has reclaimed the

channel;
• if Tn < A, it decides that the channel is still available;
• otherwise, it continues to sample another group of data

and update Tn+1 using Eq. (5).
The stopping time N is defined as the minimum number of

steps after which one of the two decision thresholds is first
crossed; that is,

N = min{n : either Tn < A or Tn > B}. (7)

V. SENSING SCHEDULING IN SEQUENTIAL PERIODIC
SENSING

The SU should find an appropriate spectrum sensing sched-
ule so that requirements for protecting the PU can be satisfied
while the spectrum, once available, is utilized to the best extent
by the SU. In this section, we provide analysis on the long-
term scheduling of the sequential test, which serves as the
foundation of our short-term adaptive sensing design.

A. Average Increment, Run Length, and Overhead

For the baseline sequential detector introduced earlier, we
consider the expected values of the test statistics, the average
run steps and the average sensing overhead.

Proposition V.1. Each of the i.i.d. test statistics T (y) has the
expected values

m0 � E[T (y)|H0]

= −M−1

2

SNR2

(1 + SNR)2
+

SNR

(1 + SNR)2
− ln(1 + SNR),

(8)

and

m1 � E[T (y)|H1]

=
M + 1

2
SNR2 + SNR− ln(1 + SNR), (9)

under H0 and H1, respectively.

Proof: Let μ0, μ1, σ0, and σ1 be the means and variances
indicated by Eq. (2). Using the identity E[x2] = Var[x] +
(E[x])2, we can easily obtain

E[(y − μ0)
2|H0] = σ2

0 ; (10)

E[(y − μ1)
2|H0] = σ2

0 + (μ1 − μ0)
2; (11)

E[(y − μ1)
2|H1] = σ2

1 ; (12)

E[(y − μ0)
2|H1] = σ2

1 + (μ1 − μ0)
2. (13)

Since

T (y) = ln
f1(y)

f0(y)

= ln

1√
2πσ1

1√
2πσ0

exp− (y−μ1)
2

2σ2
1

exp− (y−μ0)2

2σ2
0

= ln
σ0

σ1
−
(
(y − μ1)

2

2σ2
1

− (y − μ0)
2

2σ2
0

)
, (14)

we have

m0 = E[T (y)|H0]

= ln
σ0

σ1
− σ2

0E[(y − μ1)
2|H0]− σ2

1E[(y − μ0)
2|H0]

2σ2
0σ

2
1

(15)

= ln
σ0

σ1
− σ2

0(σ
2
0 + (μ1 − μ0)

2)− σ2
1σ

2
0

2σ2
0σ

2
1

(16)

= ln
σ0

σ1
+

σ2
1 − σ2

0 + (μ1 − μ0)
2

2σ2
1

=
1

2
ln

MN2

MN2(1 + SNR)2

+
MN2(1+SNR)2−MN2+(MN(1+SNR)−MN)2

2MN2(1+SNR)2

= − ln(1+SNR)+
SNR

(1+SNR)2
−M −1

2

SNR2

(1+SNR)2
,

which is Eq. (8).
We can similarly derive m1. The only difference is that the

conditional expectations to be plugged into Eqs. (15) and (16)
are replaced by Eqs. (12) and (13).

The above m0 and m1 are the average increments at each
step of the sequential test. We first note that for the same M ,
both values depend solely on SNR. The average speed of the
sequential test has a direct bearing on the separation of the two
underlying distributions. In fact, thanks to the independence
of different sample groups, Eq. (8) is the opposite of the
Kullback-Leibler (KL) information number [6]:

−I01 = E

[
ln

f1(T )

f0(T )
|H0

]
=

∫
f0(u) ln

f1(u)

f0(u)
du. (17)

Intuitively, as the SNR increases, the KL distance becomes far-
ther apart, and the two hypotheses can be faster distinguished
from one another.

By plotting both m0 and m1 under variable SNR values,
we observe that |m0| < |m1| and both |m0| and |m1| increase
monotonically with SNR. With low channel SNRs, that is,
SNR → 0+, we have 1 + SNR ≈ 1 and ln(1 + SNR) ≈
SNR. Plugging these two equations into Eqs. (8) and (9), we
have

m0 ≈ −M

2
SNR2, and m1 ≈ M

2
SNR2. (18)

That is, the absolute values of the average increments under
H0 and H1 are roughly the same when the channel SNR is
low; in other words, the underlying sequential test runs at the
same rate under both hypotheses.

In general, the exact distribution of the test statistic is diffi-
cult to derive; however, when the SNR is low, the distributions
under H0 and H1 can be approximated as Gaussian, as shown
below.
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Proposition V.2. Under low-SNR conditions, we have

T (y)
i.i.d.∼

{
H0 : N (m0, 2m1),

H1 : N (m1, 2m1),
(19)

in which m0 and m1 are given in Eq. (18).

Proof: In our settings, the relative standard deviation
(RSD), defined as the ratio between the standard deviation
and the absolute value of the mean, is fairly small with large
M values. From Eq. (2), the RSDs under both distributions
are 1/

√
M . The difference between σ0 and σ1 is hence much

smaller than that between μ0 and μ1 and can be ignored.
Now in Eq. (14), if σ0 = σ1, we have

T (y) = − (y − μ1)
2 − (y − μ0)

2

2σ2
0

=
μ1 − μ0

σ2
0

y − μ2
1 − μ2

0

2σ2
0

. (20)

Recall that if x ∼ N (μ, σ2), then ax+ b ∼ N (aμ+ b, a2σ2).
Here a = μ1−μ0

σ2
0

and b = −μ2
1−μ2

0

2σ2
0

, and then

T (y) ∼

⎧⎨
⎩H0 : N (− (μ1−μ0)

2

2σ2
0

, (μ1−μ0)
2

σ2
0

),

H1 : N ( (μ1−μ0)
2

2σ2
0

, (μ1−μ0)
2

σ2
0

).
(21)

From Eq. (2), we finally have

T (y) ∼
{
H0 : N (−M

2 SNR2,M ∗ SNR2),

H1 : N (M2 SNR2,M ∗ SNR2),
(22)

which is Eq. (19).
From Eq. (19), the test statistics under H0 and H1 are sym-

metric around zero: they have equal variances and opposite
means. This means it would take, on average, the same number
of steps for a sequential test to hit either the lower or upper
decision boundary.

Next we consider the average run length – the average
number of sample groups that need to be collected in order to
reach either decision threshold.

Proposition V.3. Regardless of the SNR value, the average
run lengths for the SU to make a decision on the channel state
under H0 and H1 are

E[N |H0] =
pFAB + (1− pFA)A

m0
(23)

and

E[N |H1] =
(1− pMD)B + pMDA

m1
(24)

respectively.

Proof: The aggregate test statistic T under either hypoth-
esis satisfies

E[TN |Hk] = E[TN |Hk] ∗ E[N |Hk], k = 0, 1. (25)

If after N steps, TN happens to cross a decision threshold
under H0, then with probability 1−PFA, the lower boundary
A = ln PMD

1−PFA
is crossed; and with probability PFA, the

upper boundary B = ln 1−PMD

PFA
is crossed. Ignoring the effect

of overshooting beyond the thresholds, the expected value of
E[TN |H0] can then be found as

E[TN |H0] = (1− PFA)A+ PFAB. (26)

Since m0 = E[TN |H0], from Eq. (25), we have

E[N |H0] =
(1− PFA)A+ PFAB

m0
. (27)

And E[N |H1] can be found similarly.
From Eqs. (6), (23), and (24), when PFA = PMD , we have

A+B = 0 and E[N |H0] = E[N |H1]. That is, the sequential
test has a symmetric structure and it takes an equal number
of steps on average to reach either decision boundary. Had
more stringent requirement been imposed on PMD to ensure
minimal interference to the PUs, that is, PMD 	 PFA, we
would have |A| >> |B| ≈ − lnPFA. In this case, even with
nearly identical increments |m0| = |m1| when the channel
SNR is very low, the upper threshold takes much less time to
be crossed so that when the PU is indeed present, the SU is
expected to quickly make the correct decision.

From Eqs. (18), (23), and (24), the expected numbers of
samples for running one sequential test under H0 and H1

with low channel SNRs are

M ∗ E[N |H0] ≈ −2 ((1− PFA)A+ PFAB)

SNR2
(28)

and

M ∗ E[N |H1] ≈
2 ((1− PMD)B + PMDA)

SNR2
(29)

respectively.
If both Eqs. (28) and (29) are multiplied by the sampling

period – the inverse of the sampling frequency – then we have
the total expected time spent on sensing. For a given time
frame for the detection task, say CDT , the expected sensing
overhead ρ under both hypotheses can also be obtained:

E[ρ|H0] = Ti/CDT ∗ E[N |H0], (30)
E[ρ|H1] = Ti/CDT ∗ E[N |H1]. (31)

To summarize the results in this subsection, for a single run
of the GD-SPRT, we have the following relationships: For a
given channel SNR value, the number of samples M and
the expected run length E[N ] are inversely proportional under
either hypothesis; as such, the expected sensing overhead
E[ρ|H0] and E[ρ|H1] are fixed. The overhead under each
hypothesis is in turn proportional to SNR−2. If the channel
SNR is reduced by 5 dB, for instance, the average number
of samples required to maintain the same sensing accuracy
level would be 10 times the original. Since in our settings,
Ti always takes a preset value, the expected run length of the
sequential test would assume such a change.

B. Sensing Scheduling Based on the Average Run Steps of the
Sequential Test

So far we have considered only a single sequential test with-
out the context of scheduling it over time. If the conventional
GD-SPRT is applied over time for periodic sensing of the
in-band channel, the sensing process would have a structure
shown in Fig. 2 (a). Time is divided into non-overlapping
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Fig. 2. Sensing scheduling with (a) forward, non-overlapping GD-SPRT and
(b) backward, overlapping GD-SPRT

units, each with length CDT . The standard GD-SPRT runs
within each window till either threshold is crossed. As long
as an H0 decision is made, the rest of the CDT period is
dedicated to uninterrupted secondary data transmission. The
scheme proposed in [11] has the very same structure; in
particular, the maximum allowable run steps Nmax is used
for the initial sensing period: T

′
p = CDT/Nmax. Normally,

Nmax is fairly large; and with moderate SNR levels, most of
the sensing action would usually have ended well before the
end of a CDT period.

We aim to design a different sensing strategy, in which
sensing is scheduled according to the average running speed of
the underlying sequential test and the sample groups are taken
uniformly across a CDT-window. In contrast to the earlier
scheme, in which only one sensing decision is made for every
non-overlapping CDT period, in our design, after collecting
new sensing data after every Tp, the SU updates its sensing
decision. As such, we let the CDT-window slide forward by
Tp after a new group of data has been collected1, as shown in
Fig. 2 (b).

Different from the conventional GD-SPRT, in our design, as
the CDT-window moves forward, a GD-SPRT runs backward
at each position of the CDT-window, starting from the latest
group of data. Since the newest data within the current window
might be generated from a different distribution from the older
ones, by having each sequential test run backward, we reduce
any impact of the older sensing data in the CDT-window that
might obscure the effect of the newer ones so that a possible
state change can be detected earlier.

We have the expected run lengths to make a sensing
decision – either right or wrong – under hypotheses H0

and H1 as in Eqs. (23) and (24). However, for scheduling,
we consider using the expected number of steps under the
condition that the “correct” decision threshold is crossed (e.g.,
the lower boundary A under H0). Let this number be denoted
as NA = A/m0, then the sensing period is determined by

Tp = min{Tp,A, Tp,B}

= min{CDT

NA
,
CDT

NB
}

= min{ CDT

A/m0
,
CDT

B/m1
} =

CDT

A
m0, (32)

1Although it seems that much higher computational effort is needed, this
is hardly the case. As one newly collected data group moves inside the CDT-
window, an old group at the end moves out; only the net change – the
difference between the two associated test statistics – needs to be calculated.

Fig. 3. Detection delay (indicated by the red arrows) with (a) forward,
non-overlapping GD-SPRT; (b) backward, overlapping GD-SPRT; and (c)
backward, overlapping GD-SPRT with short-term Tp adjustment

in which NB = B/m1 is similarly defined for the other
scenario where the SU expects to reach B under H1; Tp,A =
CDT/NA and Tp,B = CDT/NB are the sensing periods, in
order to reach A and B respectively when test statistics are
taken uniformly within the CDT-window. Finally, we take the
minimum of the two so that under both hypotheses the CDT-
window contains at least the average number of test statistics
to reach the correct decision threshold. The last equation holds
because |m0| < |m1|, and |A| ≥ |B| when PMD ≤ PFA. This
also agrees with the fact that the SU is currently sensing its
in-band channel, and hence H0 should be considered as the
“default” condition.

Both the conventional and our scheme described above are
illustrated in Fig. 3. Here, the PU returns right after the sensing
action ended in one of the non-overlapping CDT periods. In
(a), as the channel goes undetected until the next window,
the evacuation delay of the SU may exceed the required
length CDT , thereby violating the system requirement. On the
other hand, in (b), the returning PU might be detected earlier
before the evacuation deadline, thanks to the closer intervals
between adjacent sensing groups. In (c), further actions are
taken by the SU, where the sensing frequency is increased
after a possible PU return is suspected, which results in even
faster channel evacuation. We defer the detailed design of this
change detection to Sec. VI.

Due to randomness in the GD-SPRT, the SU may not have
made a sensing decision by the time it has used up all the
data within the CDT-window. Since each test is run backward
starting from the newly collected sensing data, when more
data are needed, the SU may have to go beyond the CDT-
window and retrieve historical data to continue running the
test. This again demonstrates the flexibility of our backward-
running GD-SPRT. Another issue is that if a test does not run
to completion, regardless of the length of the historical data
retrieved, the test should be truncated after the final step. A
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sequential test can easily be truncated in the end by reducing
the distance between the two decision thresholds A and B to
zero.

VI. DYNAMIC CHANGE AND OUTLIER DETECTIONS

This section addresses both the detection of the “turning
point”, where the channel state shifts from H0 to H1 due to
PU return, and the anomalous data (i.e., outliers) encountered
during sensing that could easily lead to a wrong sensing
decision. We aim to improve the sensing quality for the in-
band channel by “adaptation” of sensing actions over a much
finer timescale within CDT ; whereas the adaptation to be
introduced in the next section occurs over a longer period of
time, usually several to tens of CDT .

A. Change Detection for the In-Band Channel

In an ideal scenario, following a different distribution,
newly sensed data would exhibit an abrupt shift in some
manner from the older ones. Unfortunately, this is not the
case under low channel SNR levels, as the test statistics
under both distributions are so close that a large proportion
of test statistics under H0 end up near the average of H1.
However, by accumulating data over time, the SU might be
able to gather evidence that shows (1) a sufficient amount
of data have shifted from an earlier level and (2) the shift
is consistent, thereby declaring a channel state change. This
is the underlying theme for all change detectors; still, the
challenge here is that the SU is only allowed up to CDT
time to observe this consistent change from the time instant
the PU reclaims the channel.

We design a short-term adjustment mechanism so that
(1) the SU can immediately elevate its sensing action – by
increasing its sensing frequency – when a possible channel
state change is first suspected; and (2) the SU reverts to
its default sensing frequency if the aforementioned consistent
shift is not observed within a certain amount of time. Hence,
our change detection consists of two stages, the first one being
the regular “check”, and the second elevated sensing action
after the SU has raised its “alert level” due to suspicion of a
possible state change.

1) Triggering the Elevated Sensing Action: With the se-
quential periodic sensing structure in place, our change detec-
tor has the following features. Similar to that in the regular
sequential detection in our design, in the change detection,
the test statistics are again accumulated backward. On the
other hand, since the channel state change must be detected
within CDT , the data used in our change-detection come only
from within the CDT-window; that is, no earlier historical data
are retrieved for change detection. The following algorithm is
applied:

Tc = max{m̄new − m̄old} ≥ δ, (33)

in which Tc is the change-point test statistic; m̄new and m̄old

are averages of the newer and older test statistics in the CDT-
window respectively; and δ is a system-defined threshold that
determines the sensitivity of the SU to the shift. With larger δ
values, the SU is less sensitive to the changes in the observed
data.

Fig. 4. Outlier detection: Two thresholds are used to identify outliers

For the given set of test statistics in the CDT-window, the
SU starts with the most recent group of data (with the remain-
ing in the window as “old”) and calculates the difference;
hereafter, the new and old data lengths are increased and
decreased by one respectively till Eq. (33) is first satisfied.
At this point, the second-stage elevated sensing is triggered.
This feature is in sharp contrast with the conventional change
schemes, where a change is immediately declared following
a threshold being crossed. In our scenario, the low channel
SNR means the SU might be very susceptible to false alarms
as well if it is too sensitive to the changes. Our two-stage
design thus aims to balance the performance requirements of
quick detection of change versus higher detection accuracy.

2) Elevated Sensing: There are many ways to schedule the
elevated sensing. Two main issues of concern here are the
sensing frequency and decision-making frequency. While the
former is self-explanatory, the second factor means whether
a decision should be made every time a new sample group
is taken, even with the increased sensing frequency. The
goal is to detect a change as quickly as possible while
not incurring too much sensing overhead. The easiest way
to bypass these concerns would be to schedule maximum
sensing with a decision being made every FS, namely, the
smallest possible Tp. Although its accuracy performance is
expected the best among all the options, the computation load
can become very high, with the sensing overhead reaching
the maximum, thereby obviating the very need for efficient
sensing scheduling in the first place. A few options are studied
in our subsequent simulation section that demonstrate the
trade-offs among performance metrics.

B. Outlier Detection

Unlike a real channel state change due to the ar-
rival/departure of the PU use, the outliers could stem from
variable sources, such as environmental abnormalities (thun-
derstorms, electric spark, etc.), the internal hardware mis-
calibration that results in wrong measurements, or simply due
to extreme channel variation such as short-term deep fading
or strong interferences. Due to the cumulative nature of the
sequential test, a single outlier could affect multiple adjacent
tests containing it, for instance, by slowing them down and
increasing the detection delay significantly. Therefore, these
rare but extreme observations should be spotted quickly and
excluded from the decision-making process.
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In a dynamic environment, the only way a single SU might
be able to spot possible extreme data is to compare with the
“norm” in a largely statistical sense. In Fig. 4, a snapshot
of the energy samples taken during sensing is plotted. Two
thresholds are used to exclude the few samples that are farther
away from the majority. In our context, it is easier to handle
the processed test statistic that is distributed close to zero, and
hence the general rule for a new test statistic Tnew is

η1 ≤ Tnew < η2, (34)

where the η1 < 0 < η2 are the two thresholds.
Numerous methods exist in the statistics literature that deal

with how to identify outliers. We apply one of the most
popular methods that is based on the interquartile range [15].
If Q1 and Q3 are the lower and upper quartiles (i.e., 25%
and 75% of the rank statistics) of the recent data respectively,
then one could define an outlier to be any observation outside
the range [Q1 − K ∗ (Q3 − Q1), Q3 + K ∗ (Q3 − Q1)] for
some positive constant K . Once an outlier is identified, it
again can be handled in more than one way. For example, the
SU can ignore the sample and retake another one immediately
afterward for replacement. Alternatively, the excess portion of
the outlier can be removed and thus the outlier is “rounded”
to η1 or η2, which is named “winsorization” in the literature
[15]. In our performance studies, we consider different K
values and their impact on the detection performance when
the perceived outliers are simply discarded.

VII. SENSING ADAPTATION FOR SEQUENTIAL PERIODIC
SENSING

In a dynamic system, channel uncertainties, such as inter-
ference, noise fluctuation, and fading, may complicate the
detection process and compromise the expected detection
performance. The SU should measure the long-term statistics
of its observed sensing data and adaptively update its sensing
parameters so that the new schedule can better meet the
requirements for PU protection and SU channel utilization.

In this work, we consider the desired PFA or PMD value
as the adaptation target; and in our performance studies, we
set PFA = PMD � P ∗ = 0.1. Since it is impossible for the
SU to obtain its actual PFA and PMD values on the go2, we
consider the prospective online accuracy performance via the
virtual threshold determined by the actual data – the average
of the aggregate test statistics within the CDT-window – and
reversely calculate the corresponding false-alarm and missed-
detection probabilities3.

We let pv denote the virtual probability of sensing errors
by reversely applying Eq. (6), that is,

Pv = {P : |thre|v = ln
1− P

P
}, (35)

where |thre|v is the average of the aggregate test statistic
within the CDT-window. Subsequently, we define

rv =
Pv − P ∗

P ∗ (36)

2In fact the SU is not always able to retroactively determine the correctness
of its earlier decisions.

3For simplicity of exposition, we only present analysis here when the two
target error probabilities are equal. Otherwise, the problem can be a bit more
complicated but can be solved as a bivariate problem.

as the expected rate of change from Pv toward the target P ∗.
Then the general adaptation rule for the sensing period Tp is

Tp,new = max
(
Tmin
p ,min(Tmax

p , Tp,old + αNcrv)
)

(37)

In the equation, Tp,old and Tp,new denote the Tp values
before and after adaptation, respectively. Tmin

p and Tmax
p are

respectively the minimum and maximum allowable Tp values.
Nc is the change in the number of FSs, that corresponds to unit
rate of change in Pv (i.e., rv = 1). The parameter α ∈ (0, 1)
is a damping factor that controls the level of adaptation.
As α gets closer to one, the sensing period would almost
immediately be adjusted to the intended new value, which
could easily incur oscillatory adjustments as the difference
between the virtual and target error rates might be inflated due
to randomness and/or extreme observations. With a smaller
α, any adaptation step toward the target is carried out more
gradually, and further actions are pending on observations to
be collected in the future. For example, suppose from the
recently sensed data, the SU calculates Pv = 0.2, namely,
rv = 1; then from Eq. (37), we find the intended one-time
reduction of Tp equals 10 FS’s if Nc = 10. The SU may
instead choose to reduce Tp by 5 FS’s, following α = 0.5.

Due to the randomness of the energy samples, the averages
of the aggregate test statistics for the calculation of Pv and
rv may fluctuate over time when an insufficient number of
samples are taken. Therefore, the averages should be calcu-
lated over a longer timescale than that of the CDT-window,
for example, at most once every 10 seconds. Another factor
that should be taken into account is the average duration
of the environmental changes, such as that of the channel
shadow fading due to slow-moving obstacles nearby, or that
of the interfering signals in the channel. The random nature
of these events again may decide the adaptation frequency or
the adaptation factor α during a particular time period is not
optimal.

Another important aspect of sensing adaptation is its fre-
quency. Similar to our earlier argument on adaptation levels,
the SU should refrain from over-frequent adjustments of its
sensing parameters so that the process can be run with relative
stability. However, the adaptive sensing should also keep pace
with the change in channel statistics if the system is more
dynamic.

Despite their different goals, the regular, change, and outlier
detection processes are integrated into a single framework
in our adaptive sequential periodic sensing design. During
regular sensing, as a new energy sample is taken, the test
statistic is calculated and the outlier detection is first run.
With a valid test statistic, the change-point detection is run
using all the data within the current CDT-window, and the
resulting action depends on whether the elevated sensing is
triggered. If not, regular sensing is performed (that can utilize
earlier historical data); otherwise, elevated sensing is run till
either an H0 or H1 decision is made and the sensing period
is reset to the original level. On a much longer time scale,
long-term adaptation is carried out so that any changes in the
environment are accounted for in the form of adjusted sensing
frequency. Because of this integrated framework, a change of
one factor (such as any of the thresholds) would result in

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 03:29:57 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ROBUST AND ADAPTIVE SCHEDULING OF SEQUENTIAL PERIODIC SENSING FOR COGNITIVE RADIOS 511

TABLE I
DEFAULT SENSING SCHEDULING UNDER VARIABLE PU SIGNAL LEVELS

PU energy level (dBm) -119 -118 -117 -116 -115 -114
Tp/FS 5 7 12 19 29 46

variations of multiple performance metrics. Such effects will
be studied in detail in the performance evaluation section.

VIII. PERFORMANCE EVALUATION

In this section, we conduct MATLAB simulation studies
to demonstrate the performance of our design. In particular,
we consider the following performance metrics: the sensing
overhead and error probability4 during regular detection under
H0; and change detection delay and failure probability during
change detection. These two detection scenarios are specif-
ically distinguished from one another so that we can show
the trade-offs between their requirements. In addition, sensing
adaptation is studied in the context of interference.

A. Simulation Setup

1) System Parameters: We study the IEEE 802.22 WRAN
environment with a single primary transmitter and a secondary
user located at the edge of the keep-out radius [1]. The channel
detection time CDT = 2 s while the required PFA = PMD =
0.1. The commonly used noise power is σ2 = PnB = −95.2
dBm, in which the noise floor PSD Pn = −163 dBm/Hz
and B is the DTV channel bandwidth 6 MHz. The default
signal strength P for the DTV signal detection threshold at
the keep-out radius is −116 dBm (corresponding to SNR =
−20.8 dB) [13], and unless otherwise specified, a range of
SNR values will be subsequently studied to demonstrate the
effect of different sensing schedules.

2) Detection Parameters: We use the interquartile range
(IQR) outlier detector with the default K = 1.5. The change
detection is triggered when the default δ, twice the running
average of the recent test statistics, is first crossed. The two
thresholds A and B as in Eq. (6) are used for regular detection,
with up to 3 s of data (i.e., data within the 2 s CDT-window
and extra ones from 1 s prior to the window) for retrieval. The
truncation threshold at the last step is zero if no decision is
made by crossing either A or B.

B. Performance and Analysis

First, Table I lists the default normalized Tp values (with
respect to the MAC frame size FS) under a range of PU signal
levels as determined by Eq. (32).

1) Elevated Sensing Action: Echoing the discussions in
Sec. VI-A2, we tested the sensing performance under different
options in the second stage of the change detection, i.e.,
elevated sensing, listed in Table II.

From the table, we can see the two schemes “conv” and
“sched0” have been introduced and conceptually compared
with each other in Sec. V-B. The remaining schemes differ by

4Since our focus is on the in-band channel sensing, this error is PFA. But
had the underlying distribution been H1, the results for PMD are very close
to the ones shown here.

TABLE II
ELEVATED SENSING SCHEDULING FOR COMPARISON

notation explanation
“conv” non-overlapping CDT, forward GD-SPRT (Sec. V-B or [11])

“sched0” moving-CDT, backward GD-SPRT w/o change detection
“sched1” –, T elev

p ← 5FS, no decision till next Tp

“sched2” –, T elev
p ← 2FS, no decision till next Tp

“sched3” –, T elev
p ← Tp/2, with immediate decisions

“sched4” –, T elev
p ← Tp/3, with immediate decisions

how sensing and decision-making periods are selected. In the
schemes “sched1” and “sched2”, the elevated sensing period
T elev
p is immediately reduced to a certain pre-determined

value, but no decision is made until the original scheduled
Tp time is reached; in other words, the elevated sensing
only serves to provide more data. In contrast, “sched3” and
“sched4” see the elevated sensing periods reduced to one half
and one third of the original respectively, while a sensing
decision is made every time with the arrival of a new group
of sample.

In Figs. 5 and 6, the regular and change detection perfor-
mances are respectively plotted under these variable elevated
sensing actions. From Fig. 5, the sensing overhead of “conv”
is indeed very close to that of “sched0”, as we demonstrated
in Sec. V that the overhead is a function of total number
of samples. However, even with 1.5CDT length of data,
the regular sensing error probability PFA = PMD is still
above the target value 0.1. Thanks to elevated sensing in all
other schemes, this error performance is improved to varying
degrees, at the cost of extra sensing overhead; nevertheless, the
overhead is still well below the maximum 10%. Among the
schemes, again, we observe the trade-offs between overhead
and sensing error performances. For instance, if the sensing
period is reduced immediately to 2FS, as in “sched2”, for
higher PU energy levels (say, at -116 dBm), much higher
overhead is incurred compared to other options, so is better
sensing accuracy.

More drastic effects of applying elevated sensing can be
observed in Fig. 6. Under low PU signal levels, the average
detection time for the channel state change, across all the cases
with elevated sensing, is reduced by more than 50%, compared
to that under “conv” and “sched0”; and the resulting detection
failure probability – defined as the probability that the change
has not been detected CDT time after the PU’s return – is
also much smaller, often below 1%. In addition, the trend in
the change detection failure probability is the same as that
in the average detection delay; as the average delay goes up,
the PU will have a less chance to have been detected by the
deadline.

Interestingly, the change detection time and failure proba-
bility follow different trends for “conv” and all other schemes.
For “conv”, which doesn’t have a separate change detection
mechanism, as the channel SNR degrades, each round of
forward detection on average takes longer time, which in turn
means that more likely the PU will return in the middle of
a test when the decision on the channel state has not been
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Fig. 5. Regular detection: (a) overhead and (b) probability of sensing error
with variable elevated sensing actions
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Fig. 6. Change detection: (a) detection delay and (b) probability of detection
failure with variable elevated sensing actions

made5. In general, the ongoing test must first “cancels out”
the previously accumulated H0 values before proceeding to
reach the other threshold B. As such, the change detection
time is much longer. On the other hand, the change detection
performance in our design is constrained by the existing inter-
val between adjacent sensing (i.e., the default Tp). With higher
SNRs, this interval is larger (see Table I) which introduces a
higher initial delay before the SU responds by triggering the
elevated sensing.

2) Elevated Sensing Triggering Threshold: In Figs. 7 and 8,
the same set of performance metrics under regular and change
detections are plotted, with variable thresholds to trigger the
elevated sensing. Our subsequent simulation studies use the
“sched4” scheme described earlier. The three schemes labeled
as “change-thre1”, “change-thre2”, and “change-thre3” corre-
spond to the cases when the change threshold δ is chosen to be
3x, 2x (default), or 1x of the the recent test statistic averages.
The earlier “sched0” scheme without change detection is also
shown as “no change” for performance comparison.

From the plots, we observe that as the sensitivity of the SU
to change is increased (corresponding to a decreasing δ), both
regular and change detection accuracy levels are improved as
well, again, at the cost of more sensing effort to dispense. The
performance differences among the three schemes are actually
not significant, compared to the huge improvement over the
baseline scheme without change detection. Therefore, schedul-
ing change detection is beneficial to the regular detection as
well since the extra sensing effort is likely to expedite the

5Even when the gap as shown in Fig. 3(a) on average gets smaller, the
extra effort to take more samples to finish an ongoing test still prevails.

decision-making process by leading the sequential test out of
the intermediate zone between the thresholds A and B faster.

3) Effects of Outliers: We explore different ways to identify
the outliers for the same set of data. In Fig. 9, different
performance metrics are measured under variable K for the
IQR outlier method with the PU signal level set at -116 dBm.
The three options labeled as “1”, “2”, and “3” have K = 1,
1.5 (default), and ∞ (no outlier detection), respectively. As K
gets smaller, the SU becomes more intolerant of the extreme
data; the regular detection accuracy improves while that of the
change detection worsens. This is because data collected after
the change are more likely to be deemed as outliers initially
and discarded, leading to an increased time to declare the
change and a higher failure rate. During regular detection,
though, removal of the extreme data leads to higher accuracy
levels as the tests can run more smoothly toward the intended
threshold.

4) Effects of Historical Data: Again setting the PU level
at -116 dBm, we tested the impact of historical data length
on sensing performance. Figs. 10 and 11 depict the scenario
without and with change detection respectively. The historical
data lengths used in “1”, “2”, and “3” are respectively 1 s, 1.5
s (default), and 2 s. Without change detection, all performance
metrics are fairly sensitive to the length of the historical data.
Interestingly, in this case, as the regular detection accuracy
is improved by retrieving more data, the change detection
performance degrades as the older data are not helpful in
determining a change. On the other hand, thanks to elevated
sensing in change detection, data beyond the CDT-window are
hardly retrieved, leading to uniform performances across all
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Fig. 7. Regular detection: (a) overhead and (b) probability of sensing error
with variable elevated sensing triggering thresholds
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Fig. 8. Change detection: (a) detection delay and (b) probability of detection
failure with variable elevated sensing triggering thresholds
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Fig. 9. Effect of outliers on sensing performance: (a) change detection delay;
(b) change failure probability; and (c) regular error probability

the metrics much more superior to the counterparts obtained
without change detection.

5) Effects of Adaptation: Finally, we consider the effects
of sensing period adaptation algorithm in (37) with variable
α values. We consider four test cases, and in each case, an
interferer with an average power level Pi set at -125 dBm
and -123 dBm is introduced on top of a nominal PU signal
level P at -116 dBm. The interferer is present in the network
following the Poisson processes with one of the two patterns
(1) E[ON] = 10 s and E[OFF] = 50 s; and (2) E[ON] = 5
s and E[OFF] = 55 s, where “ON” and “OFF” represent
the time period where the interference is present and absent
respectively. Note that these interference levels are not strong
enough to cause excessive performance degradation to the SU

1 2 3
0

0.5

1

1.5

ch
an

ge
 d

et
ec

tio
n 

de
la

y 
(s

)

(a)

1 2 3
0

5

10

15

20

25

30

pr
ob

. c
ha

ng
e 

de
te

ct
io

n 
fa

ilu
re

 (
%

)

(b)

1 2 3
0

2

4

6

8

10

12

14

re
gu

la
r 

de
te

ct
io

n 
er

ro
r 

(%
)

(c)
Fig. 10. Effect of historical data length on sensing performance, no change
detection: (a) change detection delay; (b) change failure probability; and (c)
regular error probability

access. The sensing performance during H0 under different
conditions is plotted in Fig. 12. Due to interference, the
average sensing errors are observed to be above the required
10%.

Intuitively, with an external interference source being super-
imposed on the existing system, an adaptive sensing schedule
calls for more frequent sensing when the interference is
present, resulting in higher sensing overhead. This can be
observed across the cases shown in Fig. 12(a), as an increasing
level of α corresponds to a higher value of overhead. Never-
theless, the increase in overhead is minimal compared to the
CDT length. More interestingly, the error performance with
increasing α values resembles a V-shaped pattern across all
the cases in Fig. 12(b). When α is too small (say, close to
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Fig. 11. Effect of historical data length on sensing performance, with change
detection: (a) change detection delay; (b) change failure probability; and (c)
regular error probability

zero), the adaptation is too slow to accommodate the changing
environment. On the other hand, when α is large (e.g., close to
one), the adaptation may become so drastic that the sensing
frequency swings from one level to another, often crossing
multiple FS’s. As such, the sensing frequency may get well
below the desired level (such as after the interferer disappears),
resulting in elevated sensing errors. It is thus more desirable
to have “moderate” adaptation levels so that the sensing errors
can be controlled in the presence of interference. For example,
in the cases shown in the figures, the detection errors without
adaptation are anywhere from 10% to 20% higher compared
to the adaptive counterparts at α = 0.5. As expected, the
results in Fig. 12(b) also confirm that the overall sensing
performance degrades with increasing magnitudes as well as
relative durations of the interference.

C. Discussions

We have explored the trade-offs of detection overhead and
accuracy during both regular and change detections. With
much higher channel SNRs, the default Tp values may become
so large that the benefit of our sequential scheduling is offset
by the large initial delay between adjacent groups. On the
other hand, when the channel SNR becomes so low that even
the “maximum schedule” – with the highest possible sensing
frequency – becomes inadequate, an increasing Ti and/or other
collaborative SUs may help improve the sensing performance.
Besides, long-term sensing adaptation can also be shown to
improve the change detection performance with moderate α
values, thanks to the largely increased sensing frequency over
time.

IX. CONCLUSION

In this work, we have studied adaptive time-domain
scheduling of the in-band sequential periodic spectrum sens-
ing. The system requirements on detection accuracy and delay
are highlighted as the guidelines for our sensing scheduling
design. Analytical and simulation studies are provided to
demonstrate the trade-offs among various performance metrics
during sensing. Results show our design guarantees better
conformity to the spectrum access policies by significantly
reducing the delay in change detection, thus incurring min-
imal interference to the licensed users, while maintaining
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Fig. 12. H0 detection at the keep-out radius (P = -116 dBm) and maximum
stepwise change Nc = 10: (a) overhead and (b) probability of sensing error
with variable adaptation parameter α: case 1: Pi = -125 dBm, E[ON] = 10 s,
E[OFF] = 50 s; case 2: Pi = -125 dBm, E[ON] = 5 s, E[OFF] = 55 s; case
3: Pi = -123 dBm, E[ON] = 10 s, E[OFF] = 50 s; and case 4: Pi = -123
dBm, E[ON] = 5 s, E[OFF] = 55 s

desired sensing accuracy. The adaptive design is also shown
to increase the resilience of the SU sensing performance in
the presence of system interference and uncertainty. Future
work may include scheduling for a multi-radio SU as well as
the extension of our scheduling to out-of-band channels not
currently used by the SU.

ACKNOWLEDGMENT

This research was supported by the US National Science
Foundation under grant numbers CNS-1247924 and ECCS-
1231800 and was conducted at Stony Brook University.

REFERENCES

[1] IEEE 802.22 Working Group on Wireless Regional Area Networks.
http://www.ieee802.org/22/.

[2] A. T. Hoang and Y. C. Liang. Adaptive scheduling of spectrum
sensing periods in cognitive radio networks. In Proc. IEEE Global
Telecommunications Conference, GLOBECOM ’07, pages 3128–3132,
Nov. 2007.

[3] S. Huang, X. Liu, and Z. Ding. Optimal sensing-transmission structure
for dynamic spectrum access. In Proc. IEEE INFOCOM 2009, pages
2295–2303, Apr. 2009.

[4] A. K. Jayaprakasam and V. Sharma. Cooperative robust sequential detec-
tion algorithms for spectrum sensing in cognitive radio. In Ultra Modern
Telecommunications Workshops, ICUMT ’09. International Conference
on, pages 1 –8, Oct. 2009.

[5] D. R. Joshi, D. C. Popescu, and O. A. Dobre. Dynamic threshold
adaptation for spectrum sensing in cognitive radio systems. In Radio
and Wireless Symposium (RWS), 2010 IEEE, pages 468–471, 2010.

[6] D. Kazakos and P. Papantoni-Kazakos. Detection and Estimation.
Electrical engineering communications and signal processing series.
Computer Science Press, 1990.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 03:29:57 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ROBUST AND ADAPTIVE SCHEDULING OF SEQUENTIAL PERIODIC SENSING FOR COGNITIVE RADIOS 515

[7] H. Kim and K. G. Shin. In-band spectrum sensing in cognitive
radio networks: energy detection or feature detection? In Proc. 14th
ACM International Conference on Mobile Computing and Networking
(Mobicom ’08), pages 14–25, 2008.

[8] K. Kim, I. A. Akbar, K. K. Bae, J. Urn, C. M. Spooner, and J. H.
Reed. Cyclostationary approaches to signal detection and classification
in cognitive radio. In Proc. IEEE Symposium on New Frontiers in
Dynamic Spectrum Access Networks, DySPAN 2007, pages 212–215,
Apr. 2007.

[9] H. Li, C. Li, and H. Dai. Quickest spectrum sensing in cognitive radio.
In Information Sciences and Systems, CISS 2008. Proc. IEEE, pages
203–208, Mar. 2008.

[10] Q. Liu, X. Wang, and Y. Cui. Scheduling of sequential periodic sensing
for cognitive radios. In Proc. 32nd IEEE International Conference on
Computer Communications (INFOCOM 2013), pages 2220–2228, Turin,
Italy, Apr. 2013.

[11] A. W. Min and K. G. Shin. An optimal sensing framework based on
spatial rss-profile in cognitive radio networks. In Proc. IEEE Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, SECON
’09, pages 1–9, Jun. 2009.

[12] S. M. Mishra, A. Sahai, and R. W. Brodersen. Cooperative sensing
among cognitive radios. In Proc. IEEE Conference on Communications,
ICC ’06, volume 4, pages 1658–1663, Jun. 2006.

[13] S. J. Shellhammer, S. Shankar, R. Tandra, and J. Tomcik. Performance
of power detector sensors of dtv signals in ieee 802.22 wrans. In Proc.
First International Workshop on Technology and Policy for Accessing
Spectrum, TAPAS ’06, TAPAS, 2006.

[14] A. Wald. Sequential Analysis. John Wiley & Sons., New York, NY,
1947.

[15] R. R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing,
Third Edition. Academic Press, Waltham, MA, 2012.

[16] T. Yu, S. Rodriguez-Parera, D. Markovic, and D. Cabric. Cognitive
radio wideband spectrum sensing using multitap windowing and power
detection with threshold adaptation. In Communications (ICC), 2010
IEEE International Conference on, pages 1–6, 2010.

[17] T. Yucek and H. Arslan. A survey of spectrum sensing algorithms for
cognitive radio applications. Commun. Surveys Tuts., 11(1):116–130,
Jan. 2009.

[18] T. Zhang and D. H. K. Tsang. Optimal cooperative sensing scheduling
for energy-efficient cognitive radio networks. In INFOCOM, 2011 Proc.
IEEE, pages 2723 –2731, Apr. 2011.

Qiang Liu is a Ph.D. candidate in the Department of Electrical and Com-
puter engineering at Stony Brook University. His research interests include
networked data/information fusion, signal and target detection and estimation,
statistical signal processing, wireless sensor networks, as well as spectrum
sensing and allocation for cognitive radios.

Xin Wang received the B.S. and M.S. degrees in telecommunications engi-
neering and wireless communications engineering respectively from Beijing
University of Posts and Telecommunications, Beijing, China, and the Ph.D.
degree in electrical and computer engineering from Columbia University,
New York, NY. She is currently an Associate Professor in the Department
of Electrical and Computer Engineering of the State University of New York
at Stony Brook, Stony Brook, NY. Before joining Stony Brook, she was a
Member of Technical Staff in the area of mobile and wireless networking
at Bell Labs Research, Lucent Technologies, New Jersey, and an Assistant
Professor in the Department of Computer Science and Engineering of the State
University of New York at Buffalo, Buffalo, NY. Her research interests include
algorithm and protocol design in wireless networks and communications,
mobile and distributed computing, as well as networked sensing and detection.
She has served in executive committee and technical committee of numerous
conferences and funding review panels, and is the referee for many technical
journals. She serves as an associate editor of IEEE Transactions on Mobile
Computing since 2013. Dr. Wang achieved the NSF career award in 2005 and
ONR challenge award in 2010.

Yong Cui received the B.E. degree and the Ph.D. degree from Tsinghua
University, China in 1999 and 2004, respectively. He is currently a full
professor in Tsinghua University, Council Member in China Communication
Standards Association, Co-Chair of IETF IPv6 Transition WG Softwire.
Having published more than 100 papers in refereed journals and conferences,
he received the National Science and Technology Progress Award of China
in 2005, the Influential Invention Award of China Information Industry in
both 2012 and 2004, best paper awards in ACM ICUIMC 2011 and WASA
2010. Holding more than 40 patents, he is one of the authors in RFC 5747
and RFC 5565 for his proposal on IPv6 transition technologies. He serves at
the Editorial Board on both IEEE TPDS and IEEE TCC. His major research
interests include mobile wireless Internet and computer network architecture.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 03:29:57 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


